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ABSTRACT 

A n  explicit  descr ipt ion of the  cont ra  variant  induced fi l trat ion of the  Kac  

modules  of weights which are s l ( n )  s l ( m ) )  trivial leads to a recurs ion 

formula  for the  irreducible characters  of the  Lie supera lgebras  of  type  

sl(n, m). 

I n t r o d u c t i o n  

In [5] Kac invented the superversion of the Verma module, which is called now 

the Kac module. In this paper we study the case g = sl(n,m),  g = go + gl; 

go ~- s l(n)®sl(m)®c(r) ,  r is an odd simple eoroot. The odd part gl equals g+®g[ 

(subset of upper and lower triangular matrices in an appropriate representation). 

Let H be the Cartan subalgebra of g. 

Let ~ E H* be a dominant weight; the Kac module K~ is defined as K~ = 

U(g) ®u(g0+gl+) V~, when V~ is the simple sl(n) ® sl(m) module corresponding 

to ~ Isl(n)esl(m) on which g+ acts trivially and r acts on the highest vector of V~ 

by the scalar ~(r) .  U(g) denotes the enveloping algebra of (g). 

As a cyclic module, K ~  possesses a unique maximal submodule. Kac proved 

that any finite-dimensional simple module of g is obtained as a quotient of K ~  
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(for an appropriate ~), with its maximal submodule. Although quite a lot of 

work has been done to obtain the construction of the simple quotient above and 

of the Kac module itself, the complete picture is not yet clear. 

As in other situations of indecomposable objects in representation theory, con- 

tra variant forms are quite an effective tool in studying Kac modules of sl(n, m). 

(con-var forms were used at first in [8].) The first result of this paper is a complete 

expression of the con-vat form on each K ~  for which ~ is sl(n) (sl(m)) trivial. 

Following this, the construction of the corresponding simple module is given, and 

the filtration associated to the con-var form is shown to be semisimple. 

The second result is a recursion process for obtaining the con-var form, and the 

characters of each composition factor in the Kac module of arbitrary dominant 

weights, based on the first result. 

Let us explain briefly how this is done. 

In [2] the idea of the con-vat form on the one-parameter family K ~  + x~-, 

for given dominant weight ~, as a set of functions of x, was developed. The 

main result is a formula for the con-var form on the Kac modules of the trivial 

sl(n) G sl(m) weights (they admit a one-parameter family). In considering the 

branching rule of [1], to the case of tensorial weights it seems reasonable that  

any Kac module of sl(n, m) can be embedded in a go trivial Kac module of 

sl(n + k, m + k/) for k, k ~ large enough. Therefore it inherits its con-vat form 

from the last one, whose con-var form was computed in [2]. Unfortunately this 

embedding is not clear enough, except in the case when ~ is trivial with respect 

to sl(n) (or sl(m) as well). In that case K~  can be embedded in the trivial Kac 

module of sl(n + k, m) for k large enough. 

We will prove a very explicit branching rule whose crucial corollary is that  the 

embedding K~+x~ C K:~, does not depend on the parameter x. (Here Kx~, is 

the sl(n + k) • sl(m) trivial one-parameter family of sl(n + k, m).) After this 

step is done one can use the fact that the con-var form in the trivial go Kac 

module depends on the sl(m) + C(T) isotypical components only and the fact 

that  the reduction is made with respect to the other parameter n + k ~ n, to 

determine the con-vat form of K~+x~- in each of its sl(m) isotypical components 

up to a constant (dependent on x), to be the same as those of K ~  on the 

appropriate sl(m) isotypical component. The con-var form on K ~ + ~  is obtained 

by normalization of the norm of its highest vector with respect to the con-var 

form of K ~ , ,  which is, in fact, a polynomial in x. 
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The next section deals with preliminaries. After the preliminaries we begin 

with the branching rule in the case of sl(n) C go C_ sl(n, m) trivial weights. 

Theorem 2.1 and its corollaries express how the family, K~+,~ for ~ as above, is 

embedded in the one-parameter family K ~ ,  of sl(n + k, m) for appropriate  k in 

terms of the sl(m) isotypical components of Kv+x~ and Kx~. Later on we give 

the construction of K ~ + ~ .  Theorem 2.9 gives the construction of the simple 

quotient of Kv+x~ for each x. 

Theorem 2.10 states that  any quotient in the filtration is semisimple. 

Section 3 deals with a recursion process. Theorem 3.1 deals with tensor 

products of sl(n, m) modules. Proposition 3.2 says that  the reduction of some 

tensor products as in 3.1, when a Kac module is involved, doesn' t  depend on the 

continuous parameter  in some sense. 

Afterward in 3.3-3.5 we give the recursion process in order to obtain the 

con-var form on an arbi trary Kac module and the characters of each quotient 

in the filtration. 

1. Pre l iminar i e s  

Let g denote the special Lie superalgebra sl(n, ra). Denote by go the even part  

of g; gl denotes the odd part  (see [4]). 

We are viewing g as a subspace of M~+m(C),  of the matrices with zero super- 

trace. Now go is the space of matrices, supported on the n x n, m x m principal 

blocks, and gi is the space of matrices supported on the n x m, m x n nonprincipal 

blocks. The notation g~ refers to the Lie algebra sl(n) G sl(m) which is iilcluded 

naturally in g. 

The notations g+ refer to upper (lower) triangular matrices in g, g~ = gl Ng j=. 

H denotes the Car tan  subalgebra which comprise the diagonal matrices in g. 

A set of positive coroots is chosen to be {hiJ/i < j < n; n < i < j}  U {h ~,~+1 }. 

In the first set h ij means the diagonal matr ix  with 1 in the ii place, - 1  in the j j  
place and zero elsewhere; h ~,'~+i is the diagonal matr ix  with 1 in the n, n place 

and in the n + 1, n + 1 place. 

The dual of h ~,~+l with respect to a simple coroot basis of H includes h nm+i 

and is denoted by 7 and is associated with a continuous parameter  in our studies. 

An element ~ E H* is called a we igh t ,  and is a d o m i n a n t  w e i g h t  if cp(h ij) E 
N for any i < j < n or n < i < j .  

For any dominant weight ~ let us define V~ to be the simple module of go 
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corresponding to ~ [g~nH, with the extra requirement that h ~,~+1 acts on the 

highest vector of V~ as the scalar ~(hn'~+l). 

After the action of g+ is defined to be trivial, the Kac module K~ is defined as 

K~ = U(g)®U(9o+g+)V~. Here U denotes the enveloping algebra. As a g~ module 

Kcp ~- A ( g l )  ® v~ ,  where A(g l )  is the exterior algebra above g~-. It is worth 

noting that  as a g~ module K~ does not depend on the value of T. Hence in our 

studies we divide the set of dominant weights into sets of one-parameter families, 

each one of which is determined by a dominant g~ weight. The importance of 

the Kac modules comes from the next theorem of Kac. 

1.1 Each simple g module of finite dimension is a quotient module of some Kac 

module, see [4]. 

A dominant weight ~ is called t yp i ca l  if K ~  is irreducible. 

1.2 By Ehresman's theorem [7], A g l  ~-90 ®u~, where ~ goes over the set of the 

Young diagrams in the n × m rectangle and U ' is the simple go module obtained 

by matching of the sl(n) simple module corresponding to T/and the sl(m) simple 

one corresponding to ~*. For each 77, the highest vector of U ' is given by Aij eij 

where the double index goes over the black set in Figure 1. 

n + l  

n + 2  

n + 3  

1 2  . . . . . . .  j . . . . . . .  n 

Figure 1. 

1.3 As a Corollary of 1.2 we get that  knowledge of the g~ constituents of Kqo 

is a mat ter  of reduction of some tensor products of simple g~ modules. 

For any dominant ~ the family K ~ + ~  (x E c) possesses a con-var form which 

depends polynomially on x. It is well known that any g~ simple module possesses 
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a unique con-var form which is definite, so the dependence of the sl(n, m) con-var 

form on x is completely determined by its reduction to the space of g~ highest 

vectors in K~+~,. As K~+~, is generated by the highest vector, one can see that  

K~+x~ includes a unique maximal submodule which, in fact, coincides with the 

radical of the con-var form on K~+~ .  See [8] section 4 and [6] lecture 3. 

Furthermore, the con-var form on the family K ~ + ~  induces filtration on 

K ~ + ~ ,  by taking zeroes of higher orders of the form. 

In [2] the con-vat form of the family K ~  (the g~ trivial family) was computed, 

as follows. 

1.4 By 1.2, Kx,  ~-g'o OUn' the summation running over the Young diagrams fl 

in the rectangle n x m. 

On each U n the con-var form is obtained by the polynomial 

Pn = I I  (i + J - 2 n -  1 + x). 
ij 

The double index i j  runs as in 1.2. For r 1 ¢ ~', U n and U n' are orthogonal to 

each other. 

2. T h e  b r a n c h i n g  ru le  for  K~+~, w h e n  ~ Jsl(n) is t r iv ia l  a n d  its expl ic i t  

c o n s t r u c t i o n  

First we define precisely the reduction from sl(n, m) to s l (n -1 ,  m). Recall that  we 

are thinking of sl(n, m) as a subspace of M,+,~(C) of matrices of zero supertrace. 

Now, sl(n - 1, m) C sl(n, m) refers to the space spanned by the set 

{ ~ / o  < s,l _< n +..,, s,l ¢ n} n sl(n,m) 

2.1 THEOREM (Branching rule): Let ~ be a dominant weight trivial with respect 

to sl(n). Let 0 be the set of distinct sl(m) highest vectors in the sl(m) module 

h(span {e~'~/i > n}) ® V~. The weights of the elements of O can be computed 

by Young's rule. 

(i) Each v E O is a sl((n - 1), m) highest vector. 

(ii) K ~  + x~- ~ ~]~,Ee A(gl - )o  < v 7,  when g~- = sl(n - 1, m) n g l  and < v > 

is the sl(m) simple module generated by v. 

See Figure 2. 
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n + l  

n + 2  

n + 3  

n + m  

1 2  . . . . . . .  j . . . . . . .  n 

Figure 2. 

Proof: (i) One can check that the elements e in , i > n commute with the elements 

o f s l ( n - 1 )  C sl(n) C go. Now since ~ i s s l ( n )  trivial, a n y v  C O is s l ( n - 1 )  

highest vector. Let i < n , j  > n and let us compute eiJv for v C O. By definition 

v = ~ s  rs ® vs, rs is a monomial in the set {e~n;i > n} and v~ E V~. For any 

8, e i j  ( rs  ® Vs) = [rse ij] ® vs 4- rs @ eiJvs = [rse ij] @ vs since eij acts trivially on V~. 

By definition [eiJe ~n] = 5jle i~ for i < n. As ~ is sl(n) trivial and e in E sl(n) C go 

for i < n, [eiJe tn] ® Vs = 0 for aN'( l < n. Hence [eiJrs] ® vs vanishes and v is 

sl(n - 1, m) highest vector as claimed. 

The proof of (ii) comes from the fact that  A(g{-) ® V~ is free over A(gl-) and 

the use of simple dimensional arguments. 

2.2 Remark: The reduction of K~+~, under the action of sl(n - 1, m) does not 

depend on x under the constraint on ~ above. 

2.3 Remark: The s l ( n -  1, m) constituents of K÷+~r are s l ( n -  1, m) Kac modules 

of highest weights under the same constraint we began with. 

2.4 COROLLARY: Let ~ be a sl(n, m) dominant weight s.t. ~[~l(~) is trivial. 

There exists k s.t. K ~  + xT, x E c is embedded in the family K ~ ,  x E C, of 

go trivial Kac modules of sl(n + k, m). Furthermore, the embedding does not 

depend on x. 

Proof'. By Theorem 2.1 and the Young rule (see [3] p.88, also compare with 

[1] p.148) one can take k to be as large as the number of columns in a Young 
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diagram corresponding to ~ by Schur-Weyl correspondence, for K ~ + ~  to appear 

after k steps of reduction with respect to the first index (n). Using (2.2) and 

(2.3) successively one can show that  the embedding does not depend on x. 

We are prepared now to compute the embedding of the family K ~ + ~  when 

is sl(n) trivial, within K~, ,  the g~ trivial family of sl(n + k, m). 

Since the construction of K~,- is given in terms of Young diagrams, one has to 

associate a Young diagram to each sl(m) isotypical component of K ~ + ~ .  

There exists a unique Young diagram of k columns (for k big enough) 

corresponding to ~ (as sl(m) weight). We denote it by Y~. 

For the other sl(m) isotypical components to be treated, assume that n + k  ~ m 

(without loss of generality, because k can be chosen as large as we need). Now 

let 3' E H be an element s.t. [3'l] = ( n + k - m ) l  7L 0 for any t • g~- (here 

g = sl(n + k, m)).- Hence 3' acts on K , ,  as a grade function. (The grading on 

K ~  is induced by the grading of A(gi-).) 

Let Y be a Young diagram in the n x m rectangle as in 1.2 and let U y be 

its sl(rn) simple module. Using 3' it is clear that the sl(rn)'s components of 

U Y ® U ~ C K~,+~ are placed in the sl(m) components associated with Young 

diagrams in the (n + k x m) rectangle of [Y[+ IY~[ cells. (Recall that  Y~ is already 

chosen.) Here 1" I denotes the number of cells. 

The next proposition expresses the embedding of the family K ~ + ~  in Ks , .  

2.5 PROPOSITION: Let ~, ]~, k and K ~  be as before. Then: 

(i) Each Young diagram Y in the ( n + k ) × m rectangle is associated with a sl(m) 

isotypical component in K~+~ C K ~  of multiplicity ~-~.~ d(u)C~\v  . The 

summation runs over the Young diagrams in the n x m rectangle, d(u) is 

the dimension of the sl(n) simple module associated with u. C~\v ,  are the 

Littlewood-Richardson' symbols, see [3] page 87. All the sl(m) isotypical 

components of K~+~ are obtained in this way. 

(ii) The isotypical component in (i) is embedded in the isotypical component 

o f - K ~ ,  which we denoted in 1.2 by U v . 

(iii) When x is given, the sl(n, m) Kac module above corresponds to the weight 

~[,~(r~) + (x - k)r .  

Proof: (i) Follows from Ehresman's theorem (1.2) and the usual treatment with 

tensor products via Young diagrams. 
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(ii) Follows from the fact that  the reduction is done merely with respect to 

n, so the sl(m) isotypical components of K ~ + ~  should be placed in the same 

sl(m) isotypical components of K ~ .  The value of "~ determines the grading of 

the component within K ~ .  Hence (ii). 

(iii) Recall our assumption on Yv that it has k columns. Now the gap k, 

between the value of the continuous parameter on K.~ and on K ~ + ~ ,  comes 

from the fact that the operator h ~'~+1 C sl(nm) is transmitted to the operator 
[hn ,n+k+l  ]-[ eiJ] : h n'n+k+l E sl(n + k , m ) ,  together with the fact that t , l i i j eY~ 

- k  YIijeY¢ eij" l~ijeY~ eij is the highest vector of the family K v + ~  within K ~  

(see the branching theorem (2.1) and (1.2)). 

Now we can give the complete expression for the con-var form of the family 

K ~ + ~  for ~ which is sl(n) trivial. 

As we mentioned in the preliminaries, it is enough to know the values of the 

con-var form on the subspaces of g0's highest vectors in K ~ + ~  as a polynomial 

of x. 

From (2.2), the embedding of K ~ + ~  does: not depend on x, so the g~ simple 

modules in K ~ + ~  C_ K ~  inherit the con-var form of h=(~ given in (1.4) directly. 

For a Young diagram Y in the (n + k) × m let U Y be the associated sl(m) 

isotypical component of K~ (on which 7 acts as the scalar IYI, and sl(m) acts 

according to the shape of Y). 

2.6 THEOREM: For given Y~, Y and k as before, the con-var form of K ~ + ~  

reduced to U Y is determined by the polynomial  1-LjeY\Y~ (i + j - 2n - k + x - 1). 

The range of the multiplication is the black domain in Figure 3. 

n + k + l  
n+k+2  

n+k+3 

i 

Figure 3. 
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2.7 Remark: Although k appears in the formula, the polynomial does not 

depend on the choice of k (which is somehow arbitrary) because k appears as a 

constant in the definition of j .  

Proof." First we mention that  by Proposition 2.5 the relevant Y's  is our study 

are those such that  Y _~ Y~, so the claim makes sense. For the formula to be 

obtained one can use the formula in Theorem 1.4 and the fact that  the embedding 

of K~+x,  in Kxr  does not depend on x. The supplement of k in the formula 

comes from (iii) of Proposition 2.5. The range on which the indices i j  run comes 

from the normalization of the highest vector's norm of K ~ + ~ .  

2.8 COROLLARY: The con-var form on K~+x~ as a function of x is fixed on each 

isotypical sl(m) component, i.e. the con-var form is definite on each sl(m) @ C(7) 

isotypical component of  K~+~,. 

The next theorem is a direct corollary of Theorem 2.6 and gives the complete 

construction of the simple sl(n, m) module of weight ~ + XT as a g0 module once 

is sl(n) trivial. 

2.9 THEOREM: Let ~ be a dominant sl(m) weight. Let Y~ be chosen and k the 

number of  columns in Y~. Draw Y~ in the (n + k, m) rectangle. For given x draw 

the line x - k + i + j - 2n - 1 = 0 on the n + k x m rectangle. Let (i', j ' )  be the 

lower point of  the intersection of the Iine with Y~ (Figure 4). 

2 °°o°°°o 

n+k+l 
n+k+2 

i' / i  
/ i  

i / , /  I 
n + k + n / / /  I, 

1 1  

j' n+k, 

h 

x+i+j- l -2n-k=O 

Figure 4. 

Then the simple module of  the weight ~ + x r  as a go module is equal to ~ U  Y 

once Y runs over the Young diagrams in the hook which is defined by the point 
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( i p, f )  in the (n + k) × m rectangle, and U Y iS the s l (m)+  c~/ isotypical component 

in K~ corresponding to Y .  

Proof." As we mentioned in the preliminaries, the maximal submodule of K v + ~  

coincides with the radical of the con-var form of K ~ + ~ ,  so by 2.6 it includes, 

precisely, all the sl(m) isotypical components corresponding to Young diagrams 

which include at least one point on the line which is not in Y~. The simple 

quotient includes the other isotypical components in K w. This ends the proof. 

As we mentioned in the preliminaries, the con-vat form on K ~ + ~  as polyno- 

mials in x induces a filtration on Kw+z~ as follows: to any u, v in K~ the value 

of the con-var form in K v + ~  is a polynomial in t. Denote it by (vu)t. For given 

x, define for any natural  i: 

V~ ~ = {v/(v,  u)t is divided by (t - x) ~ for any u in K~}. 

Clearly K ~ + ~  = V0 ~ D V1 ~ D V2 ~ . . .  is a sequence of sl(n, m) submodules. 

2.10 THEOREM: Let ~ be a dominant sl(n) trivial weight. Then for any given x 

and i, V~/Vi~+I is semisimple. 

Proof" I t  is clear that  V~x/V~_I inherits a nondegenerate con-var form from 

K ~ + z r  . 

Assume U C_ V~/Vi~_I is a submodule. We claim that  V ± c_ Vi~/Vi~_l is 

a linear complement of U. U ± has the right dimension, because the form on 

V~x/V~_I is nondegenerate. So assume that  U N U ± # 0. As U n U ± is a 

sl(n, m) submodule it contains an isotypical sl(m) component, which is, by our 

assumption, self-orthogonal. However, the con-vat form is definite on each sl(m) 

isotypical component in V~ x (see 2.8), hence the contradiction, because distinct 

isotypical components are orthogonal to each other. 

3. The construction of  K ~  + x r  for arbitrary ~v. A r e c u r s i v e  a p p r o a c h  

We need some information on tensor products. Let Y be a Young diagram in 

the n, m hook which includes the n × m rectangle. Let K y  be the Kac module 

corresponding to Y and V~ be the simple module corresponding to one row of 

length v. 
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3.1 THEOREM: K y  ® Vr -- ®K?, summed over all K9 s.t. Yi <_ ~ <_ Yi+l, and 

= r .  

Proof'. This is an immediate Corollary of the Litt lewood-Richardson rule (the 

same as in the classical case). 

Since our goal is to get the con-var form on K ~ + ~  in terms of polynomials in 

x, the x 's  dependence on the reduction in 3.1 is acute. Since for a large enough 

integer x, K~+x~ is tensorial and typical, we can assume without loss of generality 

that  ~ is tensorial and typical and denote the corresponding Young diagram by 

3.2 PROPOSITION: The reduction of K~+~ @ V~ doesn't  depend on x. 

Proo~ At first we deal with K~+x~®V1. As sl(n)@sl(m) module V1 is isomorphic 

to U @ T, when U(T) is the natural  representation of sl(n)(sl(m)). Let V~ be 

the sl(n) ® sl(m) simple module corresponding to ~jsl(n)esl(m). Clearly V~ 

Let v be a sl(n) highest vector in V~ ® U, and t be the highest vector in 

T; then v ® t is s l (n ,m) highest vector. Hence we have a direct summand of 

Kf+x~ ® Vl as: @ A (g{-)® < v ® t > summed over all v as above. Clearly this 

direct summand of K~+x~ @ I/1 does not depend on x. To complete the reduction 

of K ~ + ~  @ V1, recall the element 7 = Ai>n,j<n eij (see [5]) which commutes 

with sl(n) @ sl(m). Now let v be a sl(m) lowest vector in Vm @ T and u the sl(m) 

lowest vector in V~. I t  is clear that  "y @ v ® u is sl(n, m) lowest vector. Hence 

A(g +) @ "y@ < v ® u >, summed over all v as above, is a direct summand  of 

K~+x~ ® VI~ which does not depend on x. By Theorem 3.1 one can see that:  

/(~+x~ @ V1 -- (@ A(gl+) ® "y@ < v ® u >) @ (A(g l - )®  < v ® u >). In the first 

summand v runs over all the sl(m) lowest vectors in V~ ® U. In the second v 

runs over the sl(n) highest vectors in Vm ® T. This is a reduction which doesn ' t  

depend on x. 

Let r be arbitrary. V~ is a direct summand of V~ ~. Hence K ~ + ~  @ V~ is 

a direct summand of Kv+z~ ® V1 °~. Clearly this reduction doesn't  depend on 

x. The proposition is proved now by using the particular case, K v + ~  ® V1 

successively r times. 

3.3 With 3.1 and 3.2 one can set a recursion formula for the characters of the 

factors of the filtration of K~+x~ for each ~ and x. One can take any order on 
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the set of Young diagrams such that Y is the minimal element of the set of Young 

diagrams which have appeared in 3.1; for instance, the lexicographic order on the 

length of rows up from the bottom. 

Let Y be a Young diagram in the n, m hook including the n x m rectangle and 

let ~v  be its weight. Let X~(x) be the character of Vf (see 2.10). Now if Y is 

included in the n strip one can use the explicit formula we developed in Section 2. 

Otherwise, let Y~ be the Young diagram which is accepted from Y by dropping 

the last row of Y. By our assumption on Y, y t  includes the n × m rectangle. 

3.4 THEOREM: 

(i) X~(X) = X~V-,IV(x)xr -- ~-~?>V Xv- IY(x )  summed  over ~" as in 3.1. 
i - - I] /  X (ii) I Y  = m i n { i [ ( x ~ , ( x ) x r ) ~ e + ~  ¢ ~ ? > ? ( X ?  ( ))~e+x~}" 

Proo~ On K ~ + ~ ® V r  one can define a con-var form by the rule ( h ® v . h ' ® v ' )  = 

(hht)(v • v ~) to h, h' e K ~ + ~ ,  v ,v '  E Vr. The forms on the right-hand side are 

the con-var forms on K ~ + ~  and V~. Now use Theorem 3.1 in splitting X~-(x)X~ 

between the Kac modules that appeared in K~y, ® V~ as constituents. 

3.5 Remark:  The boundary points of the recursion process we described are 

Young diagrams of the type we deal with in Section 2 (see Figure 5). 

I ' ® Yr = Y E) (~)Y) summed over Y < Y I 

Y 
I 

[ Y' I 

d 
Figure 5. 
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